A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants

Xu Tang^{1†}, Levi G. Lowder^{2†}, Tao Zhang³, Aimee A. Malzahn⁴, Xuelian Zheng¹, Daniel F. Voytas⁵, Zhaohui Zhong¹, Yiyi Chen¹, Qiurong Ren¹, Qian Li¹, Elida R. Kirkland², Yong Zhang^{1*} and Yiping Qi^{4,6*}

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cpf1 has emerged as an effective genome editing tool in animals. Here we compare the activity of Cpf1 from *Acidaminococcus* sp. *BV3L6* (As) and *Lachnospiraceae bacterium ND2006* (Lb) in plants, using a dual RNA polymerase II promoter expression system. LbCpf1 generated biallelic mutations at nearly 100% efficiency at four independent sites in rice T0 transgenic plants. Moreover, we repurposed AsCpf1 and LbCpf1 for efficient transcriptional repression in *Arabidopsis*, and demonstrated a more than tenfold reduction in *miR159b* transcription. Our data suggest promising applications of CRISPR-Cpf1 for editing plant genomes and modulating the plant transcriptome.

Sequence-specific nucleases (SSNs) create DNA double strand breaks at predefined genomic loci and hence provide opportunities for precise genome editing based on DNA repair. SSNs, such as zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs), are time consuming to construct, as protein engineering of their DNA binding domains is required to achieve the requisite target specificity^{1,2}. Consequently, CRISPR–Cas9, an RNA-guided endonuclease that targets DNA sites through nucleotide base pairing, has become the preferred SSN for genome editing in plants³.

CRISPR-Cpf1, a new class 2 CRISPR-Cas system, was recently used to edit genomes in human cells⁴, mice^{5,6} and *Drosophila*⁷. The Cpf1 system differs from Cas9 by at least five aspects: (1) the protospacer adjacent motif (PAM) is 'TTTN', which helps target AT-rich regions and complements the popular SpCas9 system ('NGG' PAM); (2) Cpf1 creates 5' staggered ends, which potentially can facilitate precise gene replacement using non-homologous end joining (NHEJ); (3) Cpf1 cleaves DNA at sites distal to the PAM. Such distal cleavage allows previously mutated sequences to be severed repeatedly, promoting homology-dependent repair (HDR); (4) repetitive cleavage, coupled with extensive processing of staggered 5' DNA ends, may also promote large chromosomal deletions; (5) the Cpf1 crRNA length (~43 nt) is less than half that of Cas9, making it more suitable for multiplexed genome editing and packaging into viral vectors. For all these reasons, therefore, CRISPR-Cpf1 is an attractive tool for plant genome editing.

To develop and test Cpf1 in plants, we focused on AsCpf1 and LbCpf1, both of which showed DNA cleavage activity in human cells⁴. In rice protoplasts, we expressed the plant codon optimized AsCpf1 and LbCpf1 under the maize ubiquitin (ZmUbi) promoter and the CRISPR RNA (crRNA) under the rice U6 (OsU6) promoter. However, at the targets tested, we detected little cleavage activity

(data not shown). The first nucleotide of As-crRNA and Lb-crRNA is 'U' (Fig. 1a,b), which cannot be accommodated by RNA polymerase III (Pol III) promoters such as U6 (transcription starts with 'G') and U3 (transcription starts at 'A'). Also, Pol III-transcribed crRNAs contain 3' terminal poly U sequences. These 3' poly U sequences are immediately adjacent to protospacer sequences involved in DNA recognition. We reasoned, therefore, that sequences of the crRNA might be highly specific and critical for Cpf1 activity. To accommodate this sequence specificity, we used a double ribozyme system that precisely processes the crRNAs⁸ (Supplementary Fig. 1). Both the crRNA ribozyme cassette and Cpf1 were expressed by a ZmUbi promoter to achieve coordinate expression (Fig. 1a,b). We tested this dual Pol II promoter system for targeting six sites in three rice genes (OsPDS, OsDEP1 and OsROC5), and we assayed mutation frequencies in protoplasts. With AsCpf1, three out of six target sites showed significant mutagenesis resulting from error-prone NHEJ, as revealed by restriction fragment length polymorphism (RFLP) analysis (Supplementary Fig. 2). For LbCpf1, all six target sites showed high frequencies of mutagenesis by NHEJ (Supplementary Fig. 2). Mutation frequencies were then quantified using high-throughput DNA sequencing. Mutation frequencies induced by AsCpf1 ranged from 0.6 to 10% whereas mutation frequencies induced by LbCpf1 ranged from 15 to 25% across the six targets (Fig. 1c). More than 90% of mutations produced by both AsCpf1 and LbCpf1 were deletions (Fig. 1d), and the majority ranged from 6 to 13 bp in size (Fig. 1e). These deletions are considerably larger than those induced by Cas9 $(1-3 \text{ bp})^3$, and might prove advantageous for Cpf1 use as a mutagen. Deletions mostly occurred 13-23 nucleotides distal to the PAM site for LbCpf1 (Fig. 1f) and AsCpf1 (Supplementary Fig. 3); more rarely, insertions were also recovered at these sites (Supplementary Figs 3 and 4).

Initial testing of LbCpf1 proved superior to AsCpf1 in generating mutations. Based on these findings, we accessed target specificity of LbCpf1 by testing whether the enzyme is capable of tolerating mismatches between on-target DNA and the crRNA protospacer sequence. Six double mismatch mutations (at positions 1–2, 5–6, 9–10, 13–14, 17–18 and 21–22) were introduced into the 23 nt protospacer of Lb-crRNA, which targets the first exon of *OsPDS* (Fig. 1g). These six constructs, along with the on-target control, were transformed into rice protoplasts, and mutagenesis was assessed by high-throughput DNA sequencing. Mismatches in the first 18 nt of the protospacer completely destroyed cleavage activity, whereas mismatches at positions 21–22 reduced activity by a half, and generated a

¹Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China. ²Department of Biology, East Carolina University, Greenville, North Carolina 27834, USA. ³Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China. ⁴Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA. ⁵Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA. ⁶Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA. [†]These authors contributed equally to this work. *e-mail: yiping@umd.edu; zhangyong916@uestc.edu.cn

BRIEF COMMUNICATION

NATURE PLANTS

Figure 1 | Comprehensive analysis of AsCpf1 and LbCpf1 activities in rice protoplasts. a, The AsCpf1 expression system and the AsCpf1-crRNA complex. RB, right border; LB, left border; pZmUbi, *Zea mays* Ubiquitin promoter; NosT, nopaline synthase terminator; HH, hammerhead ribozyme; HDV, hepatitis delta virus ribozyme; *Hyg*⁺, hygromycin resistance gene. **b**, The LbCpf1 expression system and the LbCpf1-crRNA complex. Approximate DNA double-strand break positions are illustrated by red triangles. **c**, Comparison of mutation frequencies by AsCpf1 and LbCpf1. **d**, Comparison of deletion frequencies by AsCpf1 and LbCpf1. **e**, Comparison of deletion sizes by AsCpf1 and LbCpf1; bp, base pairs. **f**, Positions of deleted bases by LbCpf1. PAM sequences are underlined. **g**, Off-targeting analysis with mismatch (MM) crRNAs at the *OsPDS* locus. **h**, Positions of deleted bases by LbCpf1 and *OsPDS*-crRNA01-MM06. Error bars represent standard deviations of two biological replicates.

NATURE PLANTS

BRIEF COMMUNICATION

a	Targeted rice gene	LbCpf1 reagents	Tested T0 lines	Mutated T0 lines: number, ratio	Biallelic mutation lines: number, ratio
	OsPDS	OsPDS-crRNA01	15	15, 100%	15, 100%
	OsPDS	OsPDS-crRNA02	13	13, 100%	13, 100%
	OsDEP1	OsDEP1-crRNA02	16	16, 100%	15, 93.8%
	OsROC5	OsROC5-crRNA02	19	19, 100%	19, 100%

LbCpf1 + OsPDS-crRNA01 WT b с 10 4 5 8 6 Afl WT (OsPDS) GTGAGCTTTGGAGTGAAATCTCTTGTCTTAAGGAATAAAGGAA OsPDS-crRNA01-01 -11 bp Locus-1 GTGAGC TTGGAGTGAAATCT------GAATAAAGGAA Locus-2: GTGAGCTTTGGAGTGAAATCTCTT----AATAAAGGAA -9 bp OsPDS-crRNA01-02 GTGAGCTTTGGAGTGA-----GGAA -23 bp Locus-1 Locus-2 GTGAGCTTTGGAGTGAAATCTCTTT----AATAAAGGAA -9 hn OsPDS-crRNA01-03 GTGAGCTTTGGAGTGAAATC-----Locus-1 -17 bp Locus-2 GTGAGCTTTGGAGTGAAATCTCTTGTC----GAATAAAGGAA -5 bp OsPDS-crRNA01-04 GTGAGCTTTGGAGTGA-----GGAATAAAGGAA -15 bp Locus-1 GTGAGCTTTGGAGTGAAATCTCTTGTtTTAAGGAATAAAGGAA -1 bp/+1 bp Locus-2 OsPDS-crRNA01-05 Locus-1 GTGAGCTTTGGAGTGAAATCTCT----GAATAAAGGAA -9 bp GTGAGCTTTGGAGTGAAATCTCTTG----AATAAAGGAA -8 bp Locus-2 OsPDS-crRNA01-06 Locus-1 GTGAGCTTT-----Locus-2: GTGAGCTTTGGAGTGAAATCT----GAATAAAGGAA -11 bp LbCpf1 + OsROC5-crRNA02 d WT е 2 3 Δ 5 9 10 WT (OsROC5): TCCGGT GCATGGGCAGTAGT OsROC5-crRNA02-01 TCCGGTTTTGTAAGCAGCTGGCTGAG-----TGGGCAGTAGT -6 bp Locus-1 Locus-2 TCCGGTTTTGTAAGCAGCTGGCTGAG----TGGGCAGTAGT OsROC5-crRNA02-02 TCCGGTTTTGTAAGCAGCTGGCT----ATGGGCAGTAGT -8 bp Locus-1 Locus-2 TCCGGTTTTGTAAGCAGCTGGCT-------GGGCAGTAGT -10 bp OsROC5-crRNA02-03 --GT -29 bp Locus-1 TCCGGTTTTGTA-Locus-2 TCCGGTTTTGTAAGCAGCTGGCT----TGGGCAGTAGT -9 bp OsROC5-crRNA02-04 TCCGGTTTTGTAAGCAGCTGGCTG-----Locus-1 TCCGGTTTTGTAAGCAGCTGGCTGAGGG---ATGGGCAGTAGT -3 bp Locus-2 OsROC5-crRNA02-05 Locus-1 TCCGGT TTGTAAGCAGCTGGCTGA--AGT -15 bp Locus-2 TCCGGTTTTGTAAGCAGCTGGCTGA-----GGCAGTAGT -9 bp OsROC5-crRNA02-06 Locus-1 TCCGGTTT Locus-2 TCCGGTTTTGTAAGCAGCTGGCTGAG---CATGGGCAGTAGT -4 bp

Figure 2 | Highly efficient genome editing in rice TO lines by LbCpf1. a, A summary of genotyping results on stable transgenic lines at four target sites. **b**, RFLP analysis of independent TO lines (as indicated in a) and biallelic mutations with *OsPDS*-crRNA01 revealed by Sanger sequencing. The PAM sequence is in red and the target sequence is in blue. **c**, The phenotypes of the wild type (WT; left) and a *OsPDS* mutant (right, *OsPDS*-crRNA01-03). **d**, RFLP analysis of independent TO lines (as indicated in a) and biallelic mutations with *OsROC5*-crRNA02 revealed by Sanger sequencing. The PAM sequence is in red and the target sequence is in blue. **c**, The phenotypes of the wild type (WT; left) and a *OsPDS* mutant (right, *OsPDS*-crRNA01-03). **d**, RFLP analysis of independent TO lines (as indicated in a) and biallelic mutations with *OsROC5*-crRNA02 revealed by Sanger sequencing. The PAM sequence is in red and the target sequence is in blue. Owing to two additional *Nla*III sites in the PCR amplicons, the mutated bands are slightly smaller than the uncut WT product. Note the cleaved bands for lines no. 8 and no. 10 resulted from *Nla*III sites (CATG) created by mutagenesis. **e**, The phenotypes of the WT (left) and a *OsROC5* mutant with curly leaves (right, *OsROC5*-crRNA02-02). **#**, number of different transgenic lines.

similar deletion pattern to the on-target crRNA (Fig. 1g,h). These data suggest CRISPR–Cpf1 has high targeting specificity in plant cells, consistent with the observations in human cells^{9,10}.

We next tested whether we could generate rice plants with Cpf1induced mutations. Four LbCpf1 constructs, targeting three rice genes, were transformed into rice calli by *Agrobacterium*. Analysis of individual T0 transgenic plants from independent calli revealed 100% had mutations at the target sites (Fig. 2a). The vast majority of mutations were found to be biallelic. All 15 T0 lines transformed with *OsPDS*-crRNA01 contained biallelic mutations and one line (no. 14) was homozygous (Fig. 2b; Supplementary Fig. 5); photobleaching was the phenotypic consequence of these loss of function mutations (Fig. 2c). Among 19 T0 lines transformed with reagents targeting *OsROC5*-crRNA02, all had biallelic mutations and one line (no. 1) was homozygous (Fig. 2d; Supplementary Fig. 6); biallelic knockout conferred a curly leaf phenotype (Fig. 2e). For *OsPDS*crRNA02, all 13 T0 lines had biallelic mutations and two of them were homozygous (Supplementary Fig. 7). For *OsDEP1*-crRNA02,

Figure 3 | Effective transcriptional repression in *Arabidopsis* by dAsCpf1-SRDX and dLbCpf1-SRDX. a,b, An illustration of targeted repression of *miR159b* by dAsCpf1-SRDX (a) or dLbCpf1-SRDX (b). c,d, Quantitative real-time (qRT)-PCR data showing targeted repression of *miR159b* in independent transgenic T1 lines by dAsCpf1-SRDX and dLbCpf1-SRDX, respectively. For each line, the data is in technical triplicate. Seven individual GUS (β -glucuronidase)-expressing lines with the same marker gene (*Hyg*⁺) were bulked as control. The data are normalized to the *ACTIN* 2 gene. Error bars represent standard deviations.

15 out of 16 regenerated T0 lines had biallelic mutations and the remaining one (no. 8) was heterozygous (Supplementary Fig. 8). To confirm the observed mutations were homogenous throughout individual plants, we genotyped three T0 lines each for *OsPDS*-crRNA02 and *OsDEP1*-crRNA02. For each line, DNA was extracted from three independent leaves and polymerase chain reaction (PCR) products encompassing the target site were subjected to Sanger sequencing. All sampled leaves from individual plants carried the same mutations (Supplementary Fig. 9). Thus, the LbCpf1-induced mutations in rice plants were largely non-mosaic, suggesting the nuclease acts early and effectively at a single-cell stage. Such mutations should be readily transmitted to the next generation.

Previously, we demonstrated that CRISPR-Cas9 can be engineered to regulate gene expression in plants¹¹. The thymine rich PAM makes CRISPR-Cpf1 very suitable for targeting AT-rich promoter regions, which motivated us to repurpose Cpf1 as a transcriptional repressor. The nuclease domains of AsCpf1 and LbCpf1 were deactivated by mutations, generating dAsCpf1 (D908A) and dLbCpf1 (D832A)⁴. These dCpf1 reagents were then fused to three copies of the SRDX transcriptional repressor¹¹ (Supplementary Fig. 10). We developed a dual ubiquitin promoter system to express CRISPR-dCpf1-SRDX repressors (Supplementary Fig. 10) and then tested these in Arabidopsis by targeting the promoter of a noncoding RNA, miR159b. With the dAsCpf1-SRDX repressor, expression of miR159b was less than 10% of the wild type in seven randomly chosen T1 transgenic lines (Fig. 3a,c). We also targeted miR159b with dLbCpf1-SRDX guided by the same crRNA and found similar repression activity across T1 transgenic lines, albeit with more variation (Fig. 3b,d). Thus, we demonstrated effective transcriptional repression with Cpf1-based regulators in Arabidopsis. The results suggest that although AsCpf1 is less potent as a nuclease, it effectively binds DNA, perhaps even more tightly than LbCpf1. Further investigation of this property is warranted.

While we were preparing this manuscript, two other groups reported that CRISPR–Cpf1 could edit plant genomes, albeit at a lower efficiency^{12,13}. These studies used Pol III-expressed crRNAs that contain additional nucleotides on the 5' and 3' ends, which may be suboptimal in plants. In this study, we demonstrated that LbCpf1, when coupled with Pol II-expressed and ribozyme-

processed crRNAs, is a highly effective mutagen in rice. For the first time in eukaryotic cells, we repurposed AsCpf1 and LbCpf1 as transcriptional repressors and demonstrated their high efficacy for targeted gene repression *in vivo*. CRISPR–Cpf1 holds great promise for editing plant genomes, modulating the transcriptome and other applications.

Methods

Construction of gateway compatible CRISPR-Cpf1 vectors. Details about construction of three sets of Gateway modular vectors for Cpf1, crRNA and PoII promoters of choice are available in the Supplementary Information. All the oligos and gBlocks used in this study are summarized in Supplementary Table 1.

Assembly of T-DNA expression vectors. Each individual T-DNA expression vector (Supplementary Table 2) was assembled from a single Multi-site Pro LR reaction (1-5-2) with the attR1-attR2 destination vector pYPQ203 or pYPQ202, an attL1-attR5 Cpf1 entry clone (pYPQ220, pYPQ230, pYPQ223 or pYPQ233) and an attL5-attL2 crRNA expression entry clone using Gateway LR clonase II (Invitrogen). Refer to Supplementary Methods for more details.

Rice protoplast transformation and stable transformation. The *Japonica* cultivar Nipponbare was used in this study. Polyethylene glycol transformation of rice protoplasts with T-DNA vectors was carried out according to our previously published protocol¹⁴. Rice stable transformation was conducted as published previously¹⁴.

Mutagenesis analysis at target sites. Genomic DNA was extracted from transformed rice protoplasts or transgenic lines using the CTAB method¹⁵. Mutagenesis at target sites was analysed in two methods. For RFLP analysis, each target site was amplified by PCR followed by restriction digestion with corresponding enzymes (see Supplementary Methods for details).

High-throughput sequencing analysis. The genomic region flanking Cpf1 target sites were PCR-amplified using barcoded primers for all 42 samples containing two biological replicates (Supplementary Table 3). Purified DNA samples were quantified by Qubit 2.0 Fluorometer (Life Technologies) and were sequenced using Illumina Hiseq 2,500 planform. More than 50,000 reads were generated for each sample. To generate a full-length target sequence with 250 bp paired-end Illumina reads, the paired-ends were joined by single reads using flash software¹⁶. We then used BWA¹⁷ to map all joined reads to *OsPDS* (Os03g0184000), *OsDEP1* (Os09g0441900) and *OsROC5* (Os02g0674800). Data processing and counting analysis were carried out using python and R.

Arabidopsis transformation, screen, RNA extraction and qRT–PCR analysis. *Arabidopsis* ecotype Columbia (Col-0) was used in this study. The procedures all followed our previous described protocols¹¹.

NATURE PLANTS

BRIEF COMMUNICATION

Data availability. Accession codes. The eight Gateway-compatible vectors for this CRISPR–Cpf1 system are available from Addgene (https://www.addgene.org/): pYPQ141-ZmUbi-RZ-As (no. 86196) and pYPQ141-ZmUbi-RZ-Lb (no. 86197), pYPQ202 (no. 86198), pYPQ203 (no. 86207), pYPQ220 (no. 86208), pYPQ223 (no. 86209), pYPQ230 (no. 86210), pYPQ233 (no. 86211). The high-throughput sequencing data sets have been submitted to the National Center for Biotechnology information (NCBI) database under Sequence Read Archive (SRA) BioSample ID SRS1840609.

Received 16 November 2016; accepted 27 January 2017; published 17 February 2017

References

- 1. Carroll, D. Genetics 188, 773-782 (2011).
- 2. Bogdanove, A. J. & Voytas, D. F. Science 333, 1843-1846 (2011).
- 3. Paul, J. W. III & Qi, Y. Plant Cell Rep. 35, 1417-1427 (2016).
- 4. Zetsche, B. et al. Cell 163, 759-771 (2015).
- 5. Kim, Y. et al. Nat. Biotechnol. 34, 808-810 (2016).
- 6. Hur, J. K. et al. Nat. Biotechnol. 34, 807-808 (2016).
- 7. Port, F. & Bullock, S. L. Nat. Methods 13, 852-854 (2016).
- 8. Gao, Y. & Zhao, Y. J. Integr. Plant Biol. 56, 343-349 (2014).
- 9. Kleinstiver, B. P. et al. Nat. Biotechnol. 34, 869-874 (2016).
- 10. Kim, D. et al. Nat. Biotechnol. 34, 863-868 (2016).
- 11. Lowder, L. G. et al. Plant Physiol. 169, 971-985 (2015).
- 12. Xu, R. et al. Plant Biotechnol. J. http://doi.org/bzh2 (2016).
- 13. Endo, A., Masafumi, M., Kaya, H. & Toki, S. Sci. Rep. 6, 38169 (2016).
- 14. Tang, X. et al. Mol. Plant 9, 1088-1091 (2016).
- 15. Murray, M. G. & Thompson, W. F. Nucleic Acids Res. 8, 4321-4325 (1980).
- 16. Magoc, T. & Salzberg, S. L. Bioinformatics 27, 2957-2963 (2011).
- 17. Li, H. & Durbin, R. Bioinformatics 26, 589-595 (2010).

Acknowledgements

This work was supported by grants including the National Science Foundation of China (31330017, 31271420 and 31371682) and the National Transgenic Major Project (2014ZX0801003B-002) to X.Z. and Y.Z., a Collaborative Funding Grant from North Carolina Biotechnology Center and Syngenta Biotechnology (2016-CFG-8003) and a startup fund from University of Maryland-College Park to Y.Q., and National Science Foundation (MCB 0209818, DBI 0923827 and 105-1339209) to D.F.V.

Author contributions

Y.Q., Y.Z. and D.F.V. designed the experiments. Y.Q., L.G.L. and A.A.M. generated all the constructs. X.T. and Y.Z. performed the transient assays in protoplasts and prepared samples for deep sequencing. T.Z., Y.Z. and X.T. analysed the deep sequencing data. X.T., X.Z., Z.Z., Y.C., Q.R. and Q.L. generated stable transgenic rice and analysed the plants. L.G.L. and E.R.K. produced *Arabidopsis* transcriptional repression data. Y.Q., Y.Z. and D.F.V. wrote the paper with input from other authors. All authors read and approved the final manuscript.

Additional information

Supplementary information is available for this paper.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to Y.Z. and Y.Q.

How to cite this article: Tang, X. *et al*. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. *Nat. Plants* **3**, 17018 (2017).

Competing interests

The authors declare no competing financial interests.

In the format provided by the authors and unedited.

A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants

Xu Tang^{1†}, Levi G. Lowder^{2†}, Tao Zhang³, Aimee A. Malzahn⁴, Xuelian Zheng¹, Daniel F. Voytas⁵, Zhaohui Zhong¹, Yiyi Chen¹, Qiurong Ren¹, Qian Li¹, Elida R. Kirkland², Yong Zhang^{1*} and Yiping Qi^{4,6*}

¹Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China. ²Department of Biology, East Carolina University, Greenville, North Carolina 27834, USA. ³Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China. ⁴Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA. ⁵Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA. ⁶Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA. ⁺These authors contributed equally to this work. *e-mail: yiping@umd.edu; zhangyong916@uestc.edu.cn

SUPPLEMENTARY METHODS

Gateway compatible attR1-attR2 destination vector. To accommodate Cpf1 expression in rice, a Gateway destination vector (pYPQ203) was generated by replacing the 2X 35 promoter of pMDC32¹ with the ZmUbi promoter from pUNos_C1 (Plamid # 33297 at Addgene) at HindIII-AscI sites. Similarly, another Gateway destination vector (pYPQ202) was generated with the Arabidopsis ubiquitin 10 (AtUbi10) promoter. The resulting vectors were confirmed by Sanger sequencing.

Gateway compatible attL1-attR5 Cpf1 vectors. A short linker (AsLinker, Supplementary Table 1) was used to replace Cas9p sequence at Ncol and BamHI sites of pYPQ167² (Plasmid #69309 at Addgene) to generate pYPQ167-AsLinker. Meanwhile, a rice codon-optimized AsCpf1 coding sequence was generated with the IDT website and three gBlocks (AsCpf1-gBlock1, AsCpf1-gBlock2 and AsCpf1-gBlock3; see Supplementary Table 1) covering this ~4kb sequence were ordered. These gBlocks were sequentially cloned into pYPQ167-AsLinker at Ncol-HindIII, HindIII-MfeI, and MfeI-BamHI sites to make AsCpf1 entry clone, pYPQ220. Similarly, a rice codon-optimized LbCpf1 coding sequence was also designed at IDT. Three gBlocks (LbCpf1-gBlock1, LbCpf1-gBlock2 and LbCpf1-gBlock3) were sequentially cloned into pYPQ167-AsLinker at Ncol-HindIII, HindIII-NheI, and NheI-AatII sites to generate LbCpf1 vector, pYPQ230. Both Cpf1 vectors were verified by Sanger sequencing using the sequencing primers listed in Supplementary Table 1.

To generate AsCpf1 based transcriptional repressor pYPQ223 (dAsCpf1-SRDX), two PCR fragments amplified with primer pair one (Cpf1-D908A-F1 and pYPQ221-R1) and two (pYPQ221-F2 and Cpf1-D908A-R2) were recombined in *E. coli*, resulting in pYPQ221 (containing dAsCpf1). The sequence containing 3xSRDX was cut from pYPQ153² at BsmBI and AatII sites and inserted into pYPQ221 at the same sites to generate pYPQ223 (dLbCpf1-SRDX). LbCpf1 based transcriptional repressor pYPQ233 was generated in a similar fashion with PCR primers listed in **Supplementary Table 1**.

Gateway compatible attL5-attL2 crRNA expression vectors. The ZmUbi promoter was PCR amplified from pYPQ203 with primers 14N-ZmUbi-F-SpeI and 14N-ZmUbi-R-BamHI

1

(Supplementary Table 1) using NEB Q5 polymerase. The amplicon was cloned into pYPQ141A (Plasmid #69090 at Addgene) at SpeI and BamHI sites to generate pYPQ141A-ZmUbi. Two gBlocks (RZ-As-GBK and RZ-Lb-GBK) allowing for Golden gate cloning of crRNAs for AsCpf1 and LbCpf1 were ordered and cloned into BamHI and EcoRI sites of pYPQ141A-ZmUbi. The resulting crRNA cloning vectors, pYPQ141-ZmUbi-RZ-As and pYPQ141-ZmUbi-RZ-Lb, were confirmed by sequencing. To generate individual crRNA expression plasmid for each target site, a pair of oligos were phosphorylated and annealed, and then ligated into BsmBI sites of pYPQ141-ZmUbi-RZ-Lb. Refer to Supplementary Table 1 and Supplementary Methods for more details.

Gateway® assembly of a CRISPR/Cpf1 T-DNA vector

Step1. Cloning guide RNA (gRNA) into expression vectors

I. Linearize guide RNA expression plasmids (pYPQ141-ZmUbi-RZ-As or pYPQ141-ZmUbi-RZ-Lb)

1. Digestion	with	Esp31	(BsmBI)
--------------	------	-------	---------

pYPQ141-ZmUbi-RZ-As or pYPQ141-ZmUbi-RZ-Lb	32 µl
10X OPTIZYME buffer 4	4 μl
DTT (20 mM)	2 μl
EPS3I (BsmBI) (10 u/µl; Thermo Scientific)	2 μl
Total	40 µl

Incubate at 37°C overnight; Inactivate enzymes at 80°C denature for 20 min, purify the vector using Qiagen PCR purification kit, and quantify DNA concentration using Nanodrop.

II. Cloning Oligos into linearized gRNA expression vector

2. Oligo phosphorylation and annealing

gRNA oligo forward (100 μM)	1 µl
gRNA oligo reverse (100 μM)	1 µl
10X T4 Polynucleotide Kinase buffer	1 µl
T4 Polynucleotide Kinase (10 u/μl; NEB)	0.5 μl
ddH2O	6.5 μl
Total	10 ul

Phosphorylate and anneal the oligos using 37 $^{\circ}$ C for 30 min; 95 $^{\circ}$ C for 5 min; ramp down to 25 $^{\circ}$ C at 5 $^{\circ}$ C min⁻¹ (i.e., 0.08 $^{\circ}$ C/second) using a thermocycler (alternatively: cool down in boiled water).

3. Ligate oligos into linearized gRNA expression vector and transformation of E.coli DH5α cells

ddH2O	6.5 ul
10X NEB T4 ligase buffer	1 µl
Linearized gRNA plasmid	1 µl
Diluted annealed Oligos (1:200 dilution)	1 µl
T4 ligase	0.5 μl
Total	10 µl

Incubate at room temperature for 1 hour.

4. Transform *E.coli* DH5 α cells and plate transformed cells on a Tet⁺ (5ng/ul) LB plate; 37 ^oC over night

5. Mini-prep two independent clones and verify gRNAs by Sanger sequencing with primer M13-R.

Step 2. Gateway[®] Assembly of CRISPR/Cpf1 components into a binary vector

Cpf1 entry vector (100 ng/ μl)	1 µl
Guide RNA entry vector (100ng/ μl)	1 µl
Destination vector (100 ng/ μl)	2 µl
LR Clonase II	1 µl
Total	5 µl

1. Set up Gateway LR reaction as following:

Incubate at room tempreture for 1 hour or overnight (recommended)

- 2. Transform E. coli DH5 α cells and plate transformed cells on a Kan⁺ (50 µg/ml) LB plate
- 3. Mini-prep two independent clones and verify by restriction digestion

Note 1: We have found regular LR Clonase II enzyme is efficient for the Gateway reactions. There is no need to use MultiSite Gateway recombination kit, which is much more expensive.

Note 2: If EcoRI digestion is used to confirm final T-DNA vector, there will be an extra ~3 kb band which likely results from an additional unannotated EcoRI site in the pYPQ203 vector backbone. Such an extra EcoRI site doesn't impact the functionality of the vector.

References

- 1. Curtis, M.D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. *Plant Physiol* **133**, 462-469 (2003).
- 2. Lowder, L.G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. *Plant Physiol* **169**, 971-985 (2015).

Supplementary Figure 1. A double ribozyme system for precise processing of mature crRNAs

b

Top oligo: 5'-TAGATNNNNNNNNNNNNNNNNNNNNNNNNNN 3'-ANNNNNNNNNNNNNNNNNGGCC-5' : Bottom oligo

Supplementary Figure 2. Targeted mutagenesis at six endogenous sites in rice protoplasts with AsCpf1 and LbCpf1

Supplementary Figure 3. Positions of insertions and deletions at six rice target sites by AsCpf1

Supplementary Figure 4. Position of insertions and deletions at six rice target sites by LbCpf1

Supplementary Figure 5. Biallelic mutations confirmed by Sanger sequencing in additional T0 lines targeted by with LbCpf1 and *OsPDS*-crRNA01

WT (<i>OsPDS</i>): # <i>OsPDS</i> -crRNA	GTGAGCTTTGGAGTGAAATCTCTTGTCTTAAGGAATAAAGGAA .01-07		
Locus-1:	GTGAGCTTTGGAGTGAAATCTCTAATAAAGGAA	-10bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTTAATAAAGGAA	-9bp	
#OsPDS-crRNA	01-08		
Locus-1:	GTGAGCTTTGGAGTGAAATCTCTTGGAATAAAGGAA	-7bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTTGGGAATAAAGGAA	-6bp	
#OsPDS-crRNA	\01-09		
Locus-1:		-57bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTTGTGAATAAAGGAA	-6bp	
#OsPDS-crRNA	\01-10		
Locus-1:	GTGAGCTTTGGAGTGAAATCTCAGGAA	-16bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTAATAAAGGAA	-10bp	
#OsPDS-crRNA	01-11		
Locus-1:	GTGAGCTTTGGAGTGAAAAATAAAGGAA	-15bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTTGGAATAAAGGAA	-7bp	
#OsPDS-crRNA	.01-12		
Locus-1:	GTGAGCTTTGGAGTGAAATCTCTTAATAAAGGAA	-9bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTGGAATAAAGGAA	-8bp	
#OsPDS-crRNA	01-13		
Locus-1:	GTGAGCTTTGGAGTGAAATCTCTGAATAAAGGAA	-9bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTTGAATAAAGGAA	-8bp	
#OsPDS-crRNA01-14			
Locus-1:	GTGAGCTTTGGAGTGAAATCT+	-238/+8bp	
	(+8bp:AGGATTTG)		
Locus-2:	GTGAGCTTTGGAGTGAAATCT+	-238/+8bp	
	(+8bp:AGGATTTG)		
#OsPDS-crRNA01-15			
Locus-1:	GTGAGCTTTGGAGTGAAATCTCTTG AATAAAGGAA	-8bp	
Locus-2:	GTGAGCTTTGGAGTGAAATCTCTTGTCTTAAGGgAATAAAGGAA	+1bp	

Supplementary Figure 6. Biallelic mutations confirmed by Sanger sequencing in additional T0 lines targeted by with LbCpf1 and *OsROC5*-crRNA02

WT (OsROC5): TCCGGTTTTGTAAGCAGCTGGCTGAGGGTGCATGGGCAGTAGT			
#OsROC5-crRNA02-07			
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGAa	-17/+1bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTATGGGCAGTAGT	-8bp	
#OsROC5-crRN	IA02-08		
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGGGCAGTAGT	-10bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCATGGGCAGTAGT	-9bp	
#OsROC5-crRN	IA02-09		
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGATGGGCAGTAGT	-7bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGGCAGTAGT	-11bp	
#OsROC5-crRN	JA02-10		
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCT	-20bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGGGTGCATGGGCAGTAGT	-2bp	
#OsROC5-crRN	JA02-11		
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGGCAGTAGT	-11bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGTGCATGGGCAGTAGT	-4bp	
#OsROC5-crRN	JA02-12		
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGGCAGTAGT	-11bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGCATGGGCAGTAGT	-6bp	
#OsROC5-crRN	JA02-13		
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGAGGCAGTAGT	-9bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGAGTGGGCAGTAGT	-6bp	
#OsROC5-crRN	JA02-14		
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGGGCAGTAGT	-10bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGAATGGGCAGTAGT	-6bp	
#OsROC5-crRN	JA02-15		
Locus-1:	GCATGGGCAGTAGT	-30bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGT	-19bp	
#OsROC5-crRNA02-16			
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGAGCAGTAGT	-10bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGATGGGCAGTAGT	-7bp	
#OsROC5-crRNA02-17			
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGAGTAGT	-13bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGAGTGGGCAGTAGT	-6bp	
#OsROC5-crRNA02-18			
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTAGTAGT	-14bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGATGGGCAGTAGT	-7bp	
#OsROC5-crRNA02-19			
Locus-1:	TCCGGTTTTGTAAGCAGCTGGCTGAGT	-16bp	
Locus-2:	TCCGGTTTTGTAAGCAGCTGGCTGGGCAGTAGT	-10bp	

Supplementary Figure 7. Generation of T0 rice mutants with LbCpf1 and OsPDS-crRNA02

Supplementary Figure 8. Generation of T0 rice mutants with LbCpf1 and OsDEP1-crRNA02

b WT (OsDEP1): TTTCCTTTTCCAGAAAGAGAAGGAGGCACAGATCTTGCCGTCT #OsDEP1-crRNA02-01 TTTCCTTTTC------Locus-1: ----- -38bp TTTCCTTTTCCAGAAAGAGAAGGAG-----CTTGCCGTCT -8bp Locus-2: #OsDEP1-crRNA02-02 TTTCCTTTTCCAGAAAGAGAAGGAGG-----CTTGCCGTCT -7bp Locus-1: TTTCCTTTTCCAGAAAGAGAAGGAGG----ATCTTGCCGTCT -5bp Locus-2: #OsDEP1-crRNA02-03 Locus-1: TTTCCTTTT----- -37bp TTTCCTTTTCCAGAAAGAGAAGGAGG----ATCTTGCCGTCT -5bp Locus-2: #OsDEP1-crRNA02-04 Locus-1: TTTCCTTTTCCAGAAAGAAGAAGAAGAGAG----GATCTTGCCGTCT -5bp Locus-2: TTTCCTTTTC-------+TTGCCGTCT -24/+14bp (+14bp: ACTTTTAACATACA) #OsDEP1-crRNA02-05 TTTCCTTTTCCAGAAAGAGAAGGAGG----ATCTTGCCGTCT -5bp Locus-1: TTTCCTTTTCCAGAAAGAGAAGGAG-----ATCTTGCCGTCT -6bp Locus-2: #OsDEP1-crRNA02-06 Locus-1: TTTCCTTTTCCAGAAAGAGAAGGAG-----TCT -15bp TTTCCTTTTCCAGAAAGAGAAGGAGG-----TTGCCGTCT -8bp Locus-2: #OsDEP1-crRNA02-07 TTTCCTTTTCCAGAAAGAGAAGGA-----TCTTGCCGTCT -8bp Locus-1: Locus-2: TTTCCTTTTCCAGAAAGAGAAGGAG-----cCTTGCCGTCT -8/+1bp #OsDEP1-crRNA02-08 TTTCCTTTTCCAGAAAGAGAAGGAG-----TGCCGTCT -10bp Locus-1: TTTCCTTTTCCAGAAAGAGAAGGAGGCACAGATCTTGCCGTCT WT Locus-2: #OsDEP1-crRNA02-09 Locus-1: TTTCCTTTTCCAGAAAGAGAAGGA-----CTTGCCGTCT -9bp TTTCCTTTTCCAGAAAGAGAAGGAGG-----TCTTGCCGTCT -6bp Locus-2: #OsDEP1-crRNA02-10 TTTCCTTTTCCAGAAAGAGAAGGA------ -30bp Locus-1: Locus-2: TTTCCTTTTCCAGAAAGAGAAGGAGG----ATCTTGCCGTCT -5bp #OsDEP1-crRNA02-11 TTTCCTTTTCCAGAAAGAGAAGGAG-----CTTGCCGTCT -8bp Locus-1: Locus-2: TTTCCTTTTCCAGAAAGAGAAGGAGG----ATCTTGCCGTCT -5bp #OsDEP1-crRNA02-12 TTTCCTTTTCCAGAAAGAGAAGGAG--ACAGATCTTGCCGTCT -2bp Locus-1: TTTCCTTTTCCAGAAAGAGAAGGAGG--CAGATCTTGCCGTCT -2bp Locus-2: #OsDEP1-crRNA02-13 TTTCCTTTTCCAGAAAGAGAA-----TCTTGCCGTCT -11bp Locus-1: TTTCCTTTTCCAGAAAGAGAAGGAG-----TTGCCGTCT -9bp Locus-2: #OsDEP1-crRNA02-14 TTTCCTTTTCCAGAAAGAGAAGGA-----TTGCCGTCT -10bp Locus-1: Locus-2: TTTCCTTTTCCAGAAAGAGAAGGAGGC-----TTGCCGTCT -7bp #OsDEP1-crRNA02-15 Locus-1: TTTCCTTTTCCAGAAAGAGAAGGAG-----TGCCGTCT -10bp TTTCCTTTTCCAGAAAGAGAAGGAG----GATCTTGCCGTCT -5bp Locus-2: #OsDEP1-crRNA02-16 Locus-1: TTTCCTTTTCCAGAAAGAGAA-----TGCCGTCT -14bp TTTCCTTTTCCAGAAAGAGAAGG-----ATCTTGCCGTCT -8bp Locus-2:

Supplementary Figure 9. Non-mosaic editing by the LbCpf1 system in rice

Supplementary Figure 10. A dicot expression system for dCpf1 based transcriptional repression

Name	Sequence (5'-3')	Experiment
AsLinker-F	catggcgcacAAGCTTaggtCAATTGgcggccgcG	Constructing Cpf1 entry clone
AsLinker-R	GATCCgcggccgcCAATTGacctAAGCTTgtgcgc	Constructing Cpf1 entry clone
AsCpf1-gBlock1	cttcaccatggctcctaagaagaagcggaaggttggtattcacggggtgcctg	Constructing Cpf1 entry clone
AsCnf1-gBlock2		Constructing Cpf1 entry clone
AsCnf1-gBlock3	GCTTATCGACAAGCTCAATTGCCTGGTGCTCAAGGACTATC	Constructing Cpf1 entry clone
AsCnf1-seq1	GGCACCGTCACGACCACAGAGC	Constructing Cof1 entry clone
AsCof1 sog2		Constructing Cpf1 entry clone
AsCpf1 cog2		Constructing Cp11 entry clone
Ascpl1-seq5		
Ascpil-seq4		Constructing Cpt1 entry clone
Ascpt1-seq5		Constructing Cpt1 entry clone
AsCpt1-seq6	GGITTCGACTTCGCACTATGAT	Constructing Cpf1 entry clone
LbCpf1-gBlock1	cttcaccAIGgctcctaagaagaagcggaaggttggtattcacggggtgcct	Constructing Cpt1 entry clone
LbCpf1-gBlock2	CAGGAAAAGCTTCAAAAAGATCGGAAGTTTCAGCCTGGAA	Constructing Cpf1 entry clone
LbCpf1-gBlock3	TGCGGCGCGCTAGCCTTAAGAAGGAGGAGCTTGTAGTCCA	Constructing Cpf1 entry clone
LbCpf1-seq1	TCAACGGATTCACAACAGCATTCA	Constructing Cpf1 entry clone
LbCpf1-seq2	GAATGGAACGTGATCAGAGACAAA	Constructing Cpf1 entry clone
LbCpf1-seq3	ACGATCCTGAGGTATGGTTC	Constructing Cpf1 entry clone
LbCpf1-seq4	CTTGTAGTCCACCCTGCGAATAGT	Constructing Cpf1 entry clone
LbCpf1-seq5	CGGCGGCGCACTCAAAGGTTAC	Constructing Cpf1 entry clone
Cpf1-D908A-F1	GCACCCAGAGACACCCATAATCGGGATTGcCCGGGGGGGAG	Constructing Cpf1 entry clone
pYPQ221-R1	gagcggtatcagctcactcaaagg	Constructing Cpf1 entry clone
pYPO221-F2	ctttgctggccttttgctcacat	Constructing Cpf1 entry clone
Cnf1-D908A-R2	GATGTAGATGAGGTTCCGCTCCCCCGGgCAATCCCGATTA	Constructing Cpf1 entry clone
		Constructing Cof1 entry clone
		Constructing Cpf1 entry clone
		Constructing crRNA cloning vector
RZ-As-GBK	CITCIGCAGgGATCCaaattaCIGATGAGTCCGTGAGGACGA	Constructing crRNA cloning vector
RZ-Lb-GBK	CTTCTGCAGgGATCCaaattaCTGATGAGTCCGTGAGGACGA	Constructing crRNA cloning vector
Cpf1-OsPDS-gR1-F	TAGATGAGTGAAATCTCTTGTCTTAAGG	Constructing crRNA expression entry clone
Cpf1-OsPDS-gR1-R	GGCCCCTTAAGACAAGAGATTTCACTCA	Constructing crRNA expression entry clone
Cpf1-OsPDS-gR2-F	TAGATttcaaaacccttagagatatcta	Constructing crRNA expression entry clone
Cpf1-OsPDS-gR2-R	GGCCtagatatctctaagggttttgaaA	Constructing crRNA expression entry clone
Cpf1-OsDEP1-gR1-F	TAGATctactgttgcaagtgctcaccca	Constructing crRNA expression entry clone
Cpf1-OsDEP1-gR1-R	GGCCtgggtgagcacttgcaacagtagA	Constructing crRNA expression entry clone
Cpf1-OsDEP1-gR2-F	TAGATcagAAAGAGAAGGAGGCACAGAT	Constructing crRNA expression entry clone
Cpf1-OsDEP1-gR2-R	GGCCATCTGTGCCTCCTTCTCTTTctgA	Constructing crRNA expression entry clone
Cnf1-OsBOC5-gB1-F	TAGATTGCTTCCTGCAATGCCGGTAGAC	Constructing crRNA expression entry clone
Cnf1-OsBOC5-gB1-B	GGCCGTCTACCGGCATTGCAGGAAGCAA	Constructing crRNA expression entry clone
$Cnf1_OsBOC5_gB2_E$		Constructing crRNA expression entry clone
Cpf1 - OshOC5 - gh2 - P		Constructing crNNA expression entry clone
		Constructing crRNA expression entry clone
OSPDS-IVIS1-F		Constructing CRNA expression entry clone
OSPDS-MS1-R	GGLCLCTTAAGACAAGAGATTTCACagA	Constructing crRNA expression entry clone
OsPDS-MS2-F	TAGATGAGTctAATCTCTTGTCTTAAGG	Constructing crRNA expression entry clone
OsPDS-MS2-R	GGCCCCTTAAGACAAGAGATTagACTCA	Constructing crRNA expression entry clone
OsPDS-MS3-F	TAGATGAGTGAAActTCTTGTCTTAAGG	Constructing crRNA expression entry clone
OsPDS-MS3-R	GGCCCCTTAAGACAAGAagTTTCACTCA	Constructing crRNA expression entry clone
OsPDS-MS4-F	TAGATGAGTGAAATCTCaaGTCTTAAGG	Constructing crRNA expression entry clone
OsPDS-MS4-R	GGCCCCTTAAGACttGAGATTTCACTCA	Constructing crRNA expression entry clone
OsPDS-MS5-F	TAGATGAGTGAAATCTCTTGTgaTAAGG	Constructing crRNA expression entry clone
OsPDS-MS5-R	GGCCCCTTAtcACAAGAGATTTCACTCA	Constructing crRNA expression entry clone
OsPDS-MS6-F	TAGATGAGTGAAATCTCTTGTCTTActG	Constructing crRNA expression entry clone
OsPDS-MS6-R	GGCCCagTAAGACAAGAGATTTCACTCA	Constructing crRNA expression entry clone
Cnf1-m159h-gR1-F		Constructing crRNA expression entry clone
Cpf1 m150b gR1 P	CCCCactaactatatatatacaatA	Constructing crRNA expression entry clone
		Constructing CrRNA expression entry clone
		Sequencing Cp11 and CrKINA entry clones
IVI13-R		Sequencing Cpt1 and crRNA entry clones
Cpf-OsPDS-F1	CIGGCIGCCIGICAICIAIGAA	Amplifying the OsPDS-crRNA01 target site
Cpf-OsPDS-R1	CCAAAACATCCCTTGCCTCA	Amplifying the OsPDS-crRNA01 target site
Cpf-OsPDS-F2	GGAAATGCCTTGAACAGATAGCT	Amplifying the OsPDS-crRNA02 target site
Cpf-OsPDS-R2	TTGGAAGGGAATAGTAGGTTGA	Amplifying the OsPDS-crRNA02 target site
Cpf-OsDEP1-F	TCACCGATTCTTTCCATGCG	Amplifying the OsDEP1-crRNA01/OsDEP1-c
Cpf-OsDEP1-R	GCCACAATCGGGTTTGCATT	Amplifying the OsDEP1-crRNA01/OsDEP1-c
Cpf-OsROC5-F	CTTATGTTCCGTTCCAATCCT	Amplifying the OsROC5-crRNA01/OsDEP1-c
Cpf-OsROC5-R	CCTACACTTCACATTTCCACCT	Amplifying the OsROC5-crRNA01/OsDEP1-c
HTS-1F	ATCACGctggctgcctgtcatctatgaa	High-throughput sequencing
HTS-1R	CGATGTggaggtcttggaaagtcctgg	High-throughput sequencing
HTS-2F	TTAGGCctggctgcctgtcatctatgaa	High-throughput sequencing
HTS-2R	TGACCAggaggtcttggaaagtcctgg	High-throughput sequencing
HTS-3F		High-throughnut sequencing
HTS-3R		High-throughnut sequencing
HTS-4F		High-throughout sequencing
HTS-4R	ACTTGAggaggtcttggaaagtcctgg	High-throughput sequencing

try clone clones clones rget site rget site rget site rget site DsDEP1-crRNA02 target site DsDEP1-crRNA02 target site OsDEP1-crRNA02 target site OsDEP1-crRNA02 target site

HTS-5F	GATCAGctggctgcctgtcatctatgaa
HTS-5R	TAGCTTggaggtcttggaaagtcctgg
HTS-6F	CATTTTggaaggatgaagatggagattg
HTS-6R	CCAACAgctcatgatatttatgtgacgttaa
HTS-7F	CGGAATggaaggatgaagatggagattg
HTS-7R	CTAGCTgctcatgatatttatgtgacgttaa
HTS-8F	CTATACggaaggatgaagatggagattg
HTS-8R	CTCAGAgctcatgatatttatgtgacgttaa
HTS-9F	GACGACggaaggatgaagatggagattg
HTS-9R	TAATCGgctcatgatatttatgtgacgttaa
HTS-10F	TACAGCggaaggatgaagatggagattg
HTS-10R	TATAATgctcatgatatttatgtgacgttaa
HTS-11F	TCATTCggcataataatctgtactactgcca
HTS-11R	ATCACGgaaggggtcttgcagcaact
HTS-12R	CGATGTgaaggggtcttgcagcaact
HTS-13R	TTAGGCgaaggggtcttgcagcaact
HTS-14R	TGACCAgaaggggtcttgcagcaact
HTS-15R	ACAGTGgaaggggtcttgcagcaact
HTS-16F	TCCCGAtggtacaaaacatgacccact
HTS-16R	TCCCGAgggactagaggcactttcaga
HTS-17R	CAGATCgggactagaggcactttcaga
HTS-18R	ACTTGAgggactagaggcactttcaga
HTS-19R	GATCAGgggactagaggcactttcaga
HTS-20R	TAGCTTgggactagaggcactttcaga
HTS-21F	TCGAAGaggtttgggctaatgtcctcc
HTS-21R	GGCTACcacctgtagctcagccttcat
HTS-22R	CTTGTAcacctgtagctcagccttcat
HTS-23R	AGTCAAcacctgtagctcagccttcat
HTS-24R	AGTTCCcacctgtagctcagccttcat
HTS-25R	ATGTCAcacctgtagctcagccttcat
HTS-26F	TCGGCAgctgctggtgagtgctgat
HTS-26R	CCGTCCacccattgggagtgtcttgc
HTS-27R	GTAGAGacccattgggagtgtcttgc
HTS-28R	GTCCGCacccattgggagtgtcttgc
HTS-29R	GTGAAAacccattgggagtgtcttgc
HTS-30R	GTGGCCacccattgggagtgtcttgc
HTS-31F	GGCTACctggctgcctgtcatctatgaa
HTS-31R	CTTGTAggaggtcttggaaagtcctgg
HTS-32F	AGTCAActggctgcctgtcatctatgaa
HTS-32R	AGTTCCggaggtcttggaaagtcctgg
HTS-33F	ATGTCActggctgcctgtcatctatgaa
HTS-33R	CCGTCCggaggtcttggaaagtcctgg
HTS-34F	GTAGAGctggctgcctgtcatctatgaa
HTS-34R	GTCCGCggaggtcttggaaagtcctgg
HTS-35F	GTGAAActggctgcctgtcatctatgaa
HTS-35R	GTGGCCggaggtcttggaaagtcctgg
HTS-36F	GTTTCGctggctgcctgtcatctatgaa
HTS-36R	CGTACGggaggtcttggaaagtcctgg
HTS-37F	GAGTGGctggctgcctgtcatctatgaa
HTS-37R	GGTAGCggaggtcttggaaagtcctgg
HTS-38F	ACTGATctggctgcctgtcatctatgaa
HTS-38R	ATGAGCggaggtcttggaaagtcctgg
HTS-39F	ATTCCTctggctgcctgtcatctatgaa
HTS-39R	CAAAAGggaggtcttggaaagtcctgg
HTS-40F	CAACTActggctgcctgtcatctatgaa
HTS-40R	CACCGGggaggtcttggaaagtcctgg
HTS-41F	CACGATctggctgcctgtcatctatgaa
HTS-41R	

High-throughput sequencing High-throughput sequencing

HTS-42F	CAGGCGctggctgcctgtcatctatgaa
HTS-42R	CATGGCggaggtcttggaaagtcctgg