inference/benchmark API¶
dnallm.inference.benchmark ¶
DNA Language Model Benchmarking Module.
This module provides comprehensive benchmarking capabilities for DNA language models, including performance evaluation, metrics calculation, and result visualization.
Classes¶
Benchmark ¶
Benchmark(config)
Class for benchmarking DNA Language Models.
This class provides methods to evaluate the performance of different DNA language models on various tasks, including classification, regression, and token classification.
Attributes:
config: Configuration dictionary containing task settings and
inference parameters
all_models: Dictionary mapping source names to sets of available
model names
dataset: The dataset used for benchmarking
Initialize the Benchmark class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
dict
|
Configuration object containing task settings and inference parameters |
required |
Source code in dnallm/inference/benchmark.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
Functions¶
__load_from_config ¶
__load_from_config()
Load the benchmark-specific parameters from the configuration.
Source code in dnallm/inference/benchmark.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
available_models ¶
available_models(show_all=True)
List all available models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
show_all
|
bool
|
If True, show all models. If False, |
True
|
show only the models that are available
Returns:
Type | Description |
---|---|
dict[str, Any]
|
List of model names if show_all=True, |
otherwise dictionary mapping model names to tags
Source code in dnallm/inference/benchmark.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
get_dataset ¶
get_dataset(
seq_or_path, seq_col="sequence", label_col="labels"
)
Load the dataset from the specified path or list of sequences.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seq_or_path
|
str | list[str]
|
Path to the sequence file or list of sequences |
required |
seq_col
|
str
|
Column name for DNA sequences, default "sequence" |
'sequence'
|
label_col
|
str
|
Column name for labels, default "labels" |
'labels'
|
Returns:
Name | Type | Description |
---|---|---|
DNADataset |
DNADataset
|
Dataset object containing the sequences and labels |
Source code in dnallm/inference/benchmark.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
get_inference_engine ¶
get_inference_engine(model, tokenizer)
Create an inference engine object for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
The model to be used for inference |
required | |
tokenizer
|
The tokenizer to be used for encoding sequences |
required |
Returns:
Name | Type | Description |
---|---|---|
DNAInference |
DNAInference
|
The inference engine object configured with the given model and tokenizer |
Source code in dnallm/inference/benchmark.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
plot ¶
plot(
metrics,
show_score=True,
save_path=None,
separate=False,
dataset=0,
)
Plot the benchmark results.
This method generates various types of plots based on the task type: - For classification tasks: bar charts for metrics and ROC curves - For regression tasks: bar charts for metrics and scatter plots - For token classification: bar charts for metrics only
Parameters:
Name | Type | Description | Default |
---|---|---|---|
metrics
|
dict
|
Dictionary containing model metrics |
required |
show_score
|
bool
|
Whether to show the score on the plot save_path: Path to save the plot. If None, plots will be shown interactively |
True
|
separate
|
bool
|
Whether to save the plots separately |
False
|
Returns:
Type | Description |
---|---|
None
|
None |
Source code in dnallm/inference/benchmark.py
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
run ¶
run(
model_names=None,
source="huggingface",
use_mirror=False,
save_preds=False,
save_scores=True,
)
Perform the benchmark evaluation on multiple models.
This method loads each model, runs predictions on the dataset,
calculates metrics,
and optionally saves the results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_names
|
list[str] | dict | None
|
List of model names or |
None
|
a dictionary mapping model names to paths
source: Source of the models ('local', 'huggingface', 'modelscope')
use_mirror: Whether to use a mirror for downloading models
save_preds: Whether to save the predictions
save_scores: Whether to save the metrics
Returns:
Type | Description |
---|---|
dict[str, Any]
|
dict[str, Any]: Dictionary containing benchmark results for each dataset and model |
Raises:
Type | Description |
---|---|
NameError
|
If model cannot be found in either the given source or local storage |
Source code in dnallm/inference/benchmark.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|