inference/mutagenesis API¶
dnallm.inference.mutagenesis ¶
In Silico Mutagenesis Analysis Module.
This module provides tools for evaluating the impact of sequence mutations on model predictions, including single nucleotide polymorphisms ( SNPs), deletions, insertions, and other sequence variations.
Classes¶
Mutagenesis ¶
Mutagenesis(model, tokenizer, config)
Class for evaluating in silico mutagenesis.
This class provides methods to analyze how sequence mutations affect model predictions, including single base substitutions, deletions, and insertions. It can be used to identify important positions in DNA sequences and understand model interpretability.
Attributes:
model: Fine-tuned model for prediction
tokenizer: Tokenizer for the model
config: Configuration object containing task settings and
inference parameters
sequences: Dictionary containing original and mutated sequences
dataloader: DataLoader for batch processing of sequences
Initialize Mutagenesis class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Fine-tuned model for making predictions |
required | |
tokenizer
|
Tokenizer for encoding DNA sequences |
required | |
config
|
dict
|
Configuration object containing task settings and inference parameters |
required |
Source code in dnallm/inference/mutagenesis.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
Functions¶
clm_evaluate ¶
clm_evaluate()
Calculate sequence log-probability using causal language modeling.
This method computes the log-probability of each sequence under a causal language model by summing the log probabilities of each token given its preceding context.
Returns:
Type | Description |
---|---|
list[float]
|
List of log-probabilities for each sequence |
Source code in dnallm/inference/mutagenesis.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
evaluate ¶
evaluate(strategy='last')
Evaluate the impact of mutations on model predictions.
This method runs predictions on all mutated sequences and compares them with the original sequence to calculate mutation effects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strategy
|
str | int
|
Strategy for selecting the score from the log fold change - "first": Use the first log fold change - "last": Use the last log fold change - "sum": Use the sum of log fold changes - "mean": Use the mean of log fold changes |
'last'
|
- "max"
|
Use the index of the maximum raw score to select the log fold change - int: Use the log fold change at the specified index |
required |
Returns:
Type | Description |
---|---|
list[dict]
|
Dictionary containing predictions and metadata for all sequences: |
list[dict]
|
|
list[dict]
|
|
Source code in dnallm/inference/mutagenesis.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
get_inference_engine ¶
get_inference_engine(model, tokenizer)
Create an inference engine object for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
The model to be used for inference |
required | |
tokenizer
|
The tokenizer to be used for encoding sequences |
required |
Returns:
Name | Type | Description |
---|---|---|
DNAInference |
DNAInference
|
The inference engine object configured with the given model and tokenizer |
Source code in dnallm/inference/mutagenesis.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
mlm_evaluate ¶
mlm_evaluate()
Calculate pseudo-log-likelihood score using masked token prediction.
This method computes the pseudo-log-likelihood (PLL) score for each sequence by iteratively masking each token and predicting it using the model. The PLL score is the sum of the log probabilities of the true tokens given the masked context.
Returns:
Type | Description |
---|---|
list[float]
|
List of pseudo-log-likelihood scores for each sequence |
Source code in dnallm/inference/mutagenesis.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
mutate_sequence ¶
mutate_sequence(
sequence,
batch_size=1,
replace_mut=True,
include_n=False,
delete_size=0,
fill_gap=False,
insert_seq=None,
lowercase=False,
do_encode=True,
)
Generate dataset from sequences with various mutation types.
This method creates mutated versions of the input sequence including: - Single base substitutions (A, C, G, T, optionally N) - Deletions of specified size - Insertions of specified sequences - Case transformations
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sequence
|
Single sequence for mutagenesis |
required | |
batch_size
|
int
|
Batch size for DataLoader |
1
|
replace_mut
|
bool
|
Whether to perform single base substitutions |
True
|
include_n
|
bool
|
Whether to include N base in substitutions |
False
|
delete_size
|
int
|
Size of deletions to create (0 for no deletions) |
0
|
fill_gap
|
bool
|
Whether to fill deletion gaps with N bases |
False
|
insert_seq
|
str | None
|
Sequence to insert at various positions |
None
|
lowercase
|
bool
|
Whether to convert sequences to lowercase |
False
|
do_encode
|
bool
|
Whether to encode sequences for the model |
True
|
Returns:
Type | Description |
---|---|
None (modifies internal state) |
Source code in dnallm/inference/mutagenesis.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
plot ¶
plot(preds, show_score=False, save_path=None)
Plot the mutagenesis analysis results.
This method generates visualizations of mutation effects,
typically as heatmaps,
bar charts and
line plots showing how different mutations affect model predictions
at various positions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds
|
dict
|
Dictionary containing model predicted scores and metadata |
required |
show_score
|
bool
|
Whether to show the score values on the plot save_path: Path to save the plot. If None, plot will be shown interactively |
False
|
Returns:
Type | Description |
---|---|
None
|
Plot object |
Source code in dnallm/inference/mutagenesis.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
pred_comparison ¶
pred_comparison(raw_pred, mut_pred)
Compare raw and mutated predictions.
This method calculates the difference between predictions on the original sequence and mutated sequences, providing insights into mutation effects.
Args:
raw_pred: Raw predictions from the original sequence
mut_pred: Predictions from the mutated sequence
Returns:
Tuple containing (raw_score, mut_score, logfc):
- raw_score: Processed scores from original sequence
- mut_score: Processed scores from mutated sequence
- logfc: Log fold change between mutated and original scores
Raises:
ValueError: If task type is not supported
Source code in dnallm/inference/mutagenesis.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|